关于分数的教案8篇

时间:
Youaremine
分享
下载本文

教师在构思教案时,要充分考虑知识的前后衔接,形成完整的知识体系,​,一份详实的教案能够有效降低课堂突发状况带来的困扰,下面是28范文小编为您分享的关于分数的教案8篇,感谢您的参阅。

关于分数的教案8篇

关于分数的教案篇1

教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。

学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:对单位“1”的理解。

教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

2、能根据成语说出下面的分数吗?

一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

出示一个1/4的正方形的阴影部分。

师:阴影部分可以用什么分数表示?它表示什么意思?

2、师:下列图中的阴影部分能用1/4表示吗?为什么?

如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

3、动手操作,探索新知。

(1)操作。

师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的.分数。

学生动手操作,教师巡视。

(2)交流

师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

小组交流。

(3)认识单位“1”。

师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

师:(投影出示):我们可以把这3只象看作一个整体吗?

我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

我们还可以把哪些物体也看成一个整体呢?(学生举例。)

师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

加强练习,深化概念。

练习:

1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

2、67 的分数单位是( ),有( )个这样的分数单位。

3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29 。

(2)一节课的时间是23 小时。

4、课本练习十一第9题。

5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14 ( )

(2)把5米长的绳子平均分成7段,每段占全长的57 ( )

(3)14个19 是914 ( )

(4)自然数1和单位“1”相同。( )

五、小结。

今天这节课我们学习了?你有哪些收获?

关于分数的教案篇2

教学目标:

1、运用所学知识解决一些生活中的实际问题。

2、加强列方程的思维训练。

3、培养学生分析问题解决问题的能力。

教学过程:备注

活动一:复习与准备

1、爸爸的体重75千克,小明的体重是爸爸的`7/15。

(1)、小明的体重是多少千克?

(2)、小明体内水份的质量占小明体重的4/5,小明体内有多少千克水份?

(3)让学生说出数量关系并列式计算

活动二:出示例1

1、与复习题比较有什么不同?

2、要求小明的体重应该知道什么条件?为什么?

3、以知小明体内有水份28千克,要求小明的体重,需用到哪个数量关系?

4、学生自己列式计算

5、与复习题比较有什么相同点和不同点?你发现了什么?

小结:(略)

1、要求学生自己做第二问

(1)、要求画图分析

(2)、与第一问比有什么不同?

(3)、根据什么等量关系列方程?

小结:

活动三:巩固练习

1、38页做一做

2、40页1、2

板书设计

关于分数的教案篇3

重点:

1.理解和掌握求一个数的几分之几是多少的分数应用题的结构和解题方法。

2.渗透对应思想。

难点:

1.理解这类应用题的解题方法。

2.用线段图表示分数应用题的数量关系。

教学过程:

一、复习、质疑、引新

1.说出、、米的意义。

2.列式计算:

20的是多少?6的是多少?

学生完成后,可请同学说一说这两个题为什么用乘法计算?

3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(祟课题、分数应用题)

二、探索、质疑、悟理

1.出示例1(也可以结合学生的实际自编)

学校买来100千克白菜,吃了,吃了多少千克?

①读题。理解题意,知道题中已知条件和所求问题;搞清数量间的关系。

②分析。重点分析哪句话呢?吃了这句话是分率句。是什么意思呢?(就是把100千克白菜平均分成5份,吃了这样的4份)。

③画图:(课件一演示)补:把100千克当做什么?(单位1)

画图说明:

a.量在下,率在上,先画单位1

b.十份以里分份,十份以上画示意图。

c.画图用尺子,用铅笔。

④尝试。根据同学们对题目的理解,利用已有的旧知识,让学生独立思考,试着列式解答。也可以同桌讨论,互相启发。

学生可能会出现下面解答方法:

解法一:用自己学过的整数乘法做

(千克)

解法二:(千克)

在充分研究基础上,教师可将两种解法分别写在黑板上,并请同学讲出算理和思路。解法一是根据分数意义,把100平均分成5份,吃了这样的4份,所以先求1份,用除法,再求几份,用乘法,是以前学过的归一问题。解法二是根据分数乘法的意义,吃了,是吃了100千克的,所以把100千克看作单位1,要求吃了多少,就是求100的是多少,根据一个数乘以分数的意义,所以用乘法计算。

⑤小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答。

2.巩固练习

六年级一班有学生44人,参加合唱队的`占全班学生的,参加合唱队有多少人?

订正时候强调1)把哪个数量看作单位1?

2)为什么用乘法计算?

3.学习例2

例2小林身高米,小强身高是小林的,小强身高多少米?

在学习例1的基础上,可以让学生审题后,试着画线段图表示数量关系。

(课件二演示)

先画单位1

再画单位1的几分之几

画图时注意与例1的区别。(例1是部分与整体的关系,画一条线段表示数量关系数,例2是甲乙两类关系,画两条线段表示数量关系为好。)

在学生分析比较数量关系的基础上,请同学指出问题就是求米的是多少?

列式:(米)

答:小强身高米。

4.改变例2

改变例2的条件和问题成为下题(可让学生完成)。

小强身高米,小林身高是小强的倍,小林身高多少米?

改编后,可让学生独立画图完成。

(米)

三、归纳、总结

1.今天所学题目为什么用乘法计算

2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?(都是已知一个数(即单位1)是多少,还知道它的几分之几(分率),求它的几分之几是多少。从分率可入手分析)

四、训练、深化

1.先分析数量关系,再列式解答

①一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?

②一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?

2.提高题

①一桶油400千克,用去,用去多少千克?还剩多少千克?

②一桶油400千克,用去吨,用去多少千克?还剩多少千克?

五、课后作业:练习五1、2、3

六、板书设计:

分数乘法应用题

100==80(千克)

答:吃了80千克。

(米)

答:小强身高是米。

关于分数的教案篇4

教具准备

投影。

教学过程

(一)导入

分数的意义和性质这个单元的知识我们已经学习完了,今天这节课我们共同来复习一下这个单元的知识。

(二)教学实施

1 . 引导学生归纳、梳理知识点。

提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?你能试着归纳出来吗?

学生自己试着归纳,然后请学生汇报发言,集体补充。

老师随着学生的汇报,进行板书。

分数的意义

分数的意义

分数与除法的关系:a÷b= (b≠0)

真分数

真分数和假分数

假分数 带分数

约分 最大公因数

分数的基本性质的

通分 最大公倍数

① 同分母分数

分数大小的比较 ② 同分子分数

③ 分子、分母都不同的分数

分数化成小数

分数和小数的互化

小数化成分数

2 .应用知识练习。

( 1 )完成教材第101 页的第1 题。

先独立完成填空,集体订正。

然后讨论:分数意义是什么?分数单位是什么?分数和除法有什么关系?

( 2 )完成教材第101 页的`第2 题。

让学生先将这7 个分数分类,再说一说分类的依据,每一类分别是什么分数,它们之间有什么关系。

( 3 )完成教材第101 页的第3 题。

学生先独立完成,然后说说比较分数的大小有几种情况,怎样分别比较分数的大小。

( 4 )完成教材第101 页的第4 题。

先让学生说一说分数化成小数和小数化成分数的方法,再完成题目给出的分数与小数的互化练习。

提问:互化时要注意什么?

(四)思维训练

1 . 分数 是真分数,而且可以化成有限小数,x 最大是几?

2 .一个分数,分子和分母的和是43 ,如果分母加上17 ,这个分数就可以化简成言,这个分数是( ) o

3 .一个最简分数,把它的分子扩大2 倍,而分母缩小到原来的 后,正好等于 ,这个分数原来是( )。

(五)课堂

通过本节课的学习,我们对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。

教学目标

1 .通过复习,帮助学生梳理本单元的知识要点及知识间的联系。

2 .培养学生归纳、知识的能力,掌握和复习知识的方法。

3 .培养学生自觉复习的习惯。

重点难点

归纳、本单元的知识点。

关于分数的教案篇5

教学目标

1.进一步掌握分数乘法应用题的数量关系.

2.学会用一个数乘分数的意义解答两步分数乘法应用题.

教学重点

1.掌握两步分数应用题的解题思路和方法.

2.画线段图分析应用题的能力.

教学难点

分析两次单位“1”的不同之处.

教学过程

一、复习、质疑、引新

(一)指出下面分率句中的单位“1” .

1.乙是甲的

2.小红的身高是小明的

3.参加合唱队的同学占全班同学的

4.乙的 相当于甲

5.1个篮球的价钱是一个排球价钱的 倍

(二)口头分析并列式解答

1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小华储蓄了多少元?

2.小华储蓄了15元,小新储蓄的是小华的 ,小新储蓄了多少元?

(三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要学习的新内容.

(出示课题——分数应用题)

二、探索、悟理

(一)出示组编的例题

例2.小亮储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 ,小新储蓄了多少元?

1.思考讨论

(1)小华储蓄的钱是小亮的 ,是什么意思?谁是单位“1”?

(2)小新储蓄的是小华的 ,又是什么意思?谁是单位“1”?

2.汇报思路讲方法

根据“小华储蓄的钱是小亮的 ”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱: .根据“小新储蓄的是小华的 ”,把小华的钱看作单位“1”,再标出小新的储蓄钱: .

由此基础上试列综合算式:

(二)巩固练习

小华有36张邮票,小新的邮票是小华的 ,小明的邮票是小新的 ,小明有多少张邮票?

1.分析数量关系,独立画图并列式解答.

2.学生板演.

(张)

(张)

答:小明有40张.

3.综合算式

三、归纳、明理

用连乘解答的题有什么特点?”“解题思路是什么?”

1.认真读题弄清条件和问题

2.确定单位“1”找准数量关系

根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.

3.列式解答

板书:抓住分率句,找准单位“1”,

画图来分析,列式不用急.

四、训练、深化

(一)联想练习根据下面的每句话,你能想到什么?

1.苹果的个数是梨的 .(如,梨是单位“1”;苹果少,梨多;苹果比梨少 等)

2.修了全长的

3.现在的售价比原来降低了

(二)先口头分析数量关系,再列式解答.

1.鹅的孵化期是30天,鸭的孵化期是鹅的 ,鸡的孵化期是鸭的 ,鸡的孵化期是多少天?

2.3个同学跳绳,小明跳了120下,小强跳的是小明的 ,小亮跳的是小强的 倍,小亮跳了多少下?

(三)提高题.

六年级有三个班参加植树,___________,二班植树棵数是一班的 ,三班植树棵数是二班的 倍,___________?

五、课后作业

(一)六年级同学收集了180个易拉罐,其中 是一班收集的, 是二班收集的.两班各收集多少个?

(二)长跑锻炼,小雄跑了3千米,小雄跑的. 等于小刚跑的,小勇跑的是小雄的 .小刚和小勇各跑多少千米?

六、板书设计

分数乘法应用题

小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的 ,小新储蓄的钱是小华的 .小新储蓄了多少钱?

教案点评:

解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几,分数乘法应用题,小学数学教案《分数乘法应用题》。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。

这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

关于分数的教案篇6

教学目标

抓住分数应用题的核心倍数关系和等量对应,通过一例多用、一题多变,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.

教学过程

一、引入

根据条件列出对应关系.

1.青砖的块数比红砖多

2.青砖的块数比红砖少

3.红砖的块数比青砖多

4.红砖的块数比青砖少

上面各题哪一个量是单位1的量,占几份?另一个量所对应的分率是什么,占几份?

二、展开

(一)将上列各条件补充一个共同的条件和问题,出示例1.

红砖2100块 有青砖多少块?

1.学生独立解答;

2.大组交流;

3.列表归纳.

(二)出示例2

电视机厂今年生产电视机3600台,____________________,去年生产多少台?

1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.

(1)相当于去年的25%

(2)比去年少25%

(3)比去年多25%

(4)去年生产的`是今年的25%

(5)去年比今年少25%

(6)去年比今年多25%

2.将应选择的条件填入下列各式后的括号内.

( )

( )

( )

( )

( )

( )

3.师生共同分析

(1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.

分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:

去年的产量□100

今年的产量360025

设去年生产x台,得到的式子:

在第六个式子的括号里填(1).

(2)按照式子找应补充的条件.

如:

分析:100份与3600台相对应,也就是今年的生产量3600台是单位1的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).

三、巩固

(一)根据题意列式解答:

果园里有梨树168棵 苹果树有多少棵?

(二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造??

台机器要多少元?

(三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?

(四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?

教案点评

这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用一例一类题的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。

关于分数的教案篇7

重点:

(1)理解分数乘以整数的意义

(2)理解并掌握分数乘以整数的计算法则

难点:

在计算的过程中,能约分的要先约分,然后再乘。

设计思想:

发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。

教学过程:

一、设疑激趣:

1.下面各题怎样列式?你是怎样想的.?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

2.计算下面各题,说说怎样算?

++=++=

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++==33=

3=这个算式表示什么?为什么可以这样计算?

教师板书++=3=

3.出示:(课件1)

这道题目又该怎样计算呢?

二、自主探索:

1.出示例1,读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算。

三、学生交流、质疑:

1.学生汇报,并说一说你是怎样想的?

方法a.++===(块)

方法b.3=++====(块)

2.比较这两种方法,有什么联系和区别?

(联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)

教师根据学生的回答,板书++=3

3.为什么可以用乘法计算?

(加法表示3个相加,因为加数相同,写成乘法更简便。)

4.3表示什么?怎样计算?

(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)

5.提示:为计算方便,能约分的要先约分,然后再乘。

(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)

四、归纳、概括:

1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)

2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)

(根据学生的回答,教师进行板书)

五、巩固、发展

1.巩固意义:

(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)

(2)改写算式:

+++=()()

+++++++=()()

(3)只列式不计算:3个是多少?5个是多少?

2.巩固法则:

(1)计算(说一说怎样算)

462148

(说一说,为什么先约分再相乘比较简便?以8为例来说明)

(2)应用题:

a.一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

b.美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(3)对比练习:

a.一条路,每天修千米,4天修多少千米?

b.一条路,每天修全路的,4天修全路的几分之几?

3.发展提高:

(1)出示(课件1):说说怎样想?

(2)出示(课件2):说说怎样想?

关于分数的教案篇8

【教材简析】

本课时的教学内容是在学生已经熟悉分数乘法的意义,初步掌握分数四则混合运算的基础上引导学生利用对求一个数的几分之几是多少以及其他相关数量关系的已有认识,解答一些稍复杂的与分数有关的实际问题。这些问题都是求一个数的几分之几是多少的实际问题的发展,需要学生用分数乘法和减法加以解决。

例题是已知某小学六年级参加学校运动会的总人数以及其中男运动员占总人数的几分之几,求女运动员人数的实际问题。教学时,教材首先呈现一条表示运动员人数的线段,要求学生在这条线段上分别表示男、女运动员所占的部分。通过这样的操作,一方面能使男运动员人数与总人数的关系更加清晰,另一方面也有利于启发学生思考:要求女运动员的人数,可以先算出男运动员有多少人。当学生画图操作后,教材不在呈现具体的分析过程,而是引导学生通过交流,进一步明确解题思路,并在此基础上列式解答。这样,引导学生根据自身的实际情况选择算法,有利于降低学习难度,也有利于促进学生更好地利用已有的解决问题的知识和经验。随后的练一练和练习十六的第1~2题中的数量关系都与例题相近,有利于学生进一步巩固和掌握例题所学习的分析和解决问题的方法。

【教学目标】

1、使学生学会用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用意识。

2、使学生在运用已有知识和经验进行解决一些稍复杂的实际问题的过程中,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。

【教学过程】

一、谈话引入:

同学们,你们参加过运动会吗?瞧!岭南小学举办了学生运动会(媒体同

时出示例题文字)他们六年级有45人参加,其中男运动占5/9,谁能知道女运动员有多少人?(学生自由读题,了解题意。)

评析:这一环节的设计,教师充分运用教材,以现实的、学生熟悉喜爱的活动场景引入新课,既加强了与实际生活的联系,又激发了学生参与学习活动的热情。

二、探索新知:

1、设问:从题中你知道了什么?(学生先自己说一说,再在小组里交流。)

2、反馈。

学生充分交流后,都能感受到:这是一个部分数与总数之间相比较的问题,他涉及两个基本数量关系,一个是男运动员人数与女运动员人数相加的和等于六年级运动员的总人数,另一个是男运动员人数与运动员总人数的分数关系。但一下子要想知道女运动员有多少人,问题的思路不是很清晰。

3、以图促思。(媒体出示线段图。)

4、谈话:这是一条表示运动员总人数的线段图,你能在图上分别表示出男、女运动员所占的部分吗?

5、学生操作:

学生动手操作后,教师设问:要求女运动员有多少人,可以先算什么?

6、学生再一次交流,明确解体思路。(学生通过画图后,很容易想到,要求女运动员的人数,可以先算出男运动有多少人。再用总数减去男运动员的人数就能得到女运动员的人数了。)

7、列式解答。指名一生板演,其余学生在书上完成。

8、集体批改。(对解题正确的学生进行鼓励。)

9、探讨其它算法。

设问:想一想,还可以怎样算?

如果有学生想出行如a(1-n/m)的式子,要给以表扬,但不要求学生都去掌握。

评析:这一环节的设计,教师不是把解题思路和方法直接告诉学生,而是让学生通过观察、思考、操作、交流等活动,在充分感知的基础上,借助自己的经验,用自己的策略去解决问题。在探索出解题思路后,教师没有让学生用所谓公式化的方法,而是问学生:想一想,还可以怎样算?让学生自己体会,根据自身的实际情况选择算法,这样,不仅能促进学生更好地利用已有的'解决问题的知识和经验,更有利于学生学习能力的培养。

三、巩固深化

1、完成练一练第1题

(1)弄清题意。(媒体出示题目,让学生仔细阅读。)

(2)谈话:要求还剩多少页没有看,可以先算出什么?

(3)学生独立分析并解答。

(4)集体反馈:指名汇报答案,教师重点问一问不同的方法先算的各是什么。

2、完成练一练第2题

(1)引导学生弄清题意。

(2)让学生独立解答。

(3)组内交流评议。

3、完成练习十六第1、2题

(1)指名两位学生板演,其余在自备本上完成。

(2)组织交流。

(3)集体反馈,重点让学生说一说解题时先算什么?

评析:这一环节的设计,教师利用不同的形式,不同的方法组织练习,使学生所学知识不仅得以巩固,而且得以运用。在整个练习过程中,始终以自主探索,合作交流为主。

四、总结回顾。

1、通过今天的学习,你又有什么收获?

2、用今天学到的方法可以解决生活中那些实际问题?课后可以留心观察,找到问题后进行解答,如在解答中遇到新的问题可以跟同学交流,也可以来问老师。

评析:这一环节的设计,教师让学生自己对本堂课所学知识进行总结,既使学生认识到本堂课到底学了什么,又培养了学生的概括能力和口头表达能力。让学生课后留心观察,找到问题后进行解答,不仅给学生提供展示自我的机会,同时,也培养了学生独立解决问题的能力。

关于分数的教案8篇相关文章:

关于春天的小班教案推荐8篇

中班关于车的社会教案8篇

中班关于笋的教案优质8篇

大班健康活动关于桥的教案8篇

认识分数教学反思最新7篇

分数加减混合运算教学反思6篇

关于情绪的教案7篇

关于春天的小班教案优秀7篇

关于春天的小班教案参考5篇

关于春天的小班教案7篇

关于分数的教案8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
173335